
The Administration of Distributed Computations
in a Networked Environment

An Interim Report

Luis Felipe Cabrera, Stuart Sechrest
Ramon Caceres

Report No. UCB/CSD 86/268

November 1985
PROGRES Report No. 85.16

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
The Administration of Distributed Computations in a Networked
Environment: An Interim Report

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Networks of computers running Berkeley UNIX allow users to program and run multiple-process
applications that execute concurrently on several machines. We present solutions to the problems of
process tracking, administration, and control in this networked computing environment. We have designed
and implemented a personal process manager for an enhanced Berkeley UNIX system that provides the
user with much needed process management and process control capabilities not found elsewhere. The
personal process manager is a distributed program based on a collection of user processes which make use
of specialized system daemons. It provides on demand services, allows process control across machine
boundaries, and may outlive the user login session in which it was created. When active, it becomes the
process creation server for a user’s remote processes, collects and preserves basic information about
process activities, provides a notion of state of a distributed computation, and interfaces with several data
analysis and data representation tools. The personal process manager also has crash recovery facilities.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Administration of Distributed Computations
in a Networked Environment

An Interim Report

Luis Felipe Cabrera, Stuart Sechrest
Ramon Caceres

Report No. UCB/CSD 86/268

November 1985
PROGRES Report No. 85.16

Computer Science Division (EECS)
University of California
Berkeley, California 94720

1.

2.

3.

4.

5.

6.

7.

8.

9.

The Administration of Distributed Computations
in a Networked Environment

An Interim Report

Luis Felipe Cabrera
Stuart Sechrest
Ramon Caceres

Computer Systems Research Group

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

INDEX

Introduction

Functions of the Personal Process Manager

Design of the Personal Process Manager

Failure-Free Operation .. .

Robustness and Recovery

Implementation and Performance ;

Future Work .. .

Conclusions .. .

Bibliography

1

3

4

6

8

9

10

11

12

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Naval

Electronics Systems Conuna.nd under contract No. N00030-84-C-008Q. The views and conclusions contained in this

document are those of the authors and should not be interpreted a.s representing official policies, either expressed or

implied, of the Defense Research Projects Agency or of the US Goverment.

The Administration of Distributed Computations
in a Networked Environment

An Interim Report

Luis Felipe Cabrera t
Stuart Sechrest

Ramon Caceres t

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

Abstract

Networks of computers running Berkeley UNIX™ allow users to program and run multiple­

process applications that execute concurrently on several machines. We present solutions to the

problems of process tracking, administration, and control in this networked computing

environment. We have designed and implemented a personal process manager for an enhanced

Berkeley UNIX system that provides the user with much needed process management and process

control capabilities not found elsewhere.

The personal process manager is a distributed program based on a collection of user

processes which make use of specialized system daemons. It provides on demand services, allows

process control across machine boundaries, and may outlive the user login session in which it was

created. When active, it becomes the process creation server for a user's remote processes,

collects and preserves basic information about process activities, provides a notion of state of a

distributed computation, and interfaces with several data analysis and data representation tools.

The personal process manager also has crash recovery facilities.

Index Terms: Berkeley UNIX, distributed software, local area networks, interprocess

communication, process control, crash recovery.

1. Introduction

The advent of large local area networks of computers within institutions provides users with

an unprecedented wealth of computing resources. The variety of processing alternatives now

available was never present in traditional single-site timesharing systems. Although the aggregate

computer power of these networks tops the fastest computers ever built, new operating system

support and new user tools are required to make effective use of a network of collaborating hosts.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Naval

Electronics Systems Conuna.nd under contract No. N00030-84-C-0080. The views a.nd conclusions contained in this

document are those of the authors and should not be interpreted as representing official policies, either expressed or

implied, of the Defense Research Projects Agency or of the US Goverment.

t Author's present address: IBM Almaden Research Center, Mail Stop K52/803, 650 Harry Road, Sa.n Jose, CA

05120-60110.

t Author's present address: Pyramid Technology Corporation, 1205 Charleston Roa.d, Mountain View, CA 04030-

7205.

2

In particular, process control across machine boundaries has to be dealt with in satisfactory ways.

The management of multiple-process programs and multiple programs running simultaneously on

several machines is a mostly unsolved problem in current computing environments. Many past

and existing systems that have allowed multiple process collaboration have not included the user

facilities necessary for administration of multiple-process computations whose components execute

in several machines.

UNIX [21], in particular, provides for the m:lnagement and control of a process within a

host. This control is exerted indirectly by the usu through facilities provided by (command

interpreter) shells, or by calling a program to send a software interrupt to a process. The

capabilities that this process control provides are well suited to the typical multiple-process

program in UNIX, the 'pipeline' of processes. Controlling a pipeline requires only the ability to

control the shell's direct children, which is all that is provided in the UNIX C-shell [22]. The

UNIX paradigm of 'pipelined' multiple-process programs is not, however, appropriate for general

distributed computations. Here, arbitrary genealogical process structure relationships should be

allowed to exist without sacrificing the user's ability to control the computation. Other UNIX

based systems [1, 23] have not gone beyond the pipeline paradigm. In [20, 23] there are

mechanisms for user controlled migration of processes. However, neither of these systems has user

facilities for locating the execution sites of a distributed computation and broadcasting, say, a

software interrupt to stop execution. Although 4.2BSD Berkeley UNIX has networking

capabilities [12, 22], it does not have adequate user facilities for process control across machine

boundaries.

Another deficiency of existing systems has been the lack within process management

facilities of historical information about the processing behavior of computations. Those event

tracing tools that have existed in different computing environments [14-15] have not been

incorporated into process management facilities in the corresponding systems. Multiple-process

computations that span processors require for their appropriate management not only powerful

and flexible mechanisms for process control but also historical processing information. In this way

history dependent events can be set by users to trigger process state changes. Systems that were

designed to support multiple process computations, like task forces [5, 8, 16] and teams [3-4], do

not have these capabilities. Configuration languages [5, 10-11] have not included such history

dependent events in their process model.

As a solution to some of the problems of distributed computation administration and process

control we have implemented the personal process manager, PPM, for networks of computers

running an enhanced Berkeley UNIX 4.3BSD. In Berkeley UNIX 4.3BSD interprocess

communication can be accomplished using different addressing families and styles of

communication. Two processes wishing to communicate need not have a common ancestor nor

reside in the same host. The PPM can determine in which state (running, stopped, or dead) each

of the component processes of a multiple-process program is, find what resources have been used,

locate in which processor each process is executing, and find the genealogical relationships between

them. Moreover, process management facilities should also allow a user, in event dependent ways,

to change the state of each of its processes and possibly the site of execution. Our process

management mechanism also allows the delivery and handling of software interrupts with no

interprocess constraints based on creation dependencies. The PPM does not currently support a

configuration language. It provides access to its facilities through subroutine calls.

The current implementation of the personal process manager is a distributed program based

on a collection of user-level processes. It provides on demand services, allows process control

across machine boundaries, and may outlive the user login session in which it was created. When

active, it becomes the process creation server for a user's remote processes, collects and preserves

basic information about process activities, and interfaces with several data analysis and data

representation tools. The PPM provides a layer of intercommunication based on reliable stream

connections, allowing tools to ignore all topological aspects of requesting and gathering distributed

information. The current PPM does not have process migration facilities.

3

The rest of this paper is subdivided as follows. In Section 2 we present the basic functions of

the personal process manager. Section 3 discusses its design and the security issues involved with

this kind of facility. Section 4 contains a description of the manager's operation in a failure-free

environment while in Section 5 we present its error and crash recovery facilities. Section 6

presents implementation and performance considerations. Section 7 points to future work, while

Section 8 consists of our conclusions.

2. Functions of the Personal Process Manager

A primary consideration in our effort has been that the implementation should be layered on

top of existing mechanisms, with kernel changes kept to a minimum. The six additional design

considerations behind our implementation are (1) that users need to be able to track, manage, and

control their processes in flexible ways, (2) that mechanisms for user services should be on

demand, (3) that the mechanism's overhead should be proportional to the amount of service

provided, (4) that extensive event tracing facilities should be selectively available for user

management of processing activities, (5) that the mechanism should scale well, and (6) that it

should be robust. Our solution applies to networks of computers that have explicit machine

boundaries and that share administrative authority.

The personal process manager, PPM, is a distributed program implemented as a collection

of user-level processes called local process managers, LPMs. LPMs are created on demand, and

are the basis of our management and control mechanism. A computation is considered to be a

group of processes that have a common logical ancestor. Under the PPM the processes form a

(logical) tree that may span a number of machines. Under some failure modes this tree may

become a forest. It could also become a forest upon exit [22] of a process. However, we chose to

retain exit information while there are children alive, and for the display of a genealogical

distributed computation snapshot we mark the process as exited. Process identities can be made

globally known to the network of machines. Thus the user may track and control each process,

and simultaneously manage a number of distributed computations consisting of multiple processes.

The implementation of the PPM includes the utilization of system daemons+, and has required

some modification of some key system calls provided by the 4.3BSD kernel.

Three considerations caused us to choose to provide individual process managers, rather

than a single system-wide manager. First, we wanted to minimize overhead and to localize its

cost and effects. The on demand nature of our PPM is consistent with the policy of affecting only

those users who desire the additional functionality, while minimizing the impact of the mechanism

on those users who do not wish it. Second, this mechanism must scale well. If users are to exploit

the aggregate computing power of large networks, the management of, say, a 200-host

computation should not substantially degrade the participating hosts. As there is no replicated

data to be kept up to date in our on demand user oriented mechanism, the PPM's overhead can

be reduced to a minimum. Third, we want to require authentication only the first time an LPM is

invoked. A centralized process managing facility requires some form of authentication with each

request and each action performed; we do not have the fast authentication mechanism that would

be needed in this case. Moreover, this kind of centralized mechanism would not scale well. The

current PPM is viewed by us as a step towards a networked environment that effectively supports

distributed computations and towards understanding the tradeoffs and requirements of process

management facilities in a fully distributed, host transparent system [6J.

The PPM may outlive the user login session in which it was created. When present, the

component LPMs become process creation servers of remote user processes. The LPMs gather

and preserve local information about user process activities, accept parameters that determine the

amount of process events recorded, communicate with sibling LPMs, have crash recovery

facilities, are message based, provide a notion of state for a distributed computation, interface

t UNIX da.emons are system owned processes always available for use.

with several data reduction and data display tools, and allow users to administer their processes in

very flexible ways. We expect PPM performance to degrade gracefully when user processes span

large number of nodes in an internetwork of computers.

3. Design of The Per11onal Process Manager

PPM is a distributed program implemented as a coilcction of LPMs. Per-host LPMs allow

us to use existing mechanisms for process control within each host, and to minimize interhost

messages and operations. It is not possible to require a s!t.c to be omniscient and still expect such

a mechanism to scale well. The UNIX reality of many short lived processes highlights the

desirability of on demand information and control requests. Decentralizing the implementation of

the PPM was also motivated by the the fact that most processes are never subject to control and

information about them need not be propagated between machines.

PPM provides a variety of services to the user through tools that connect to the local LPM.

Requests to the local LPM are forwarded to remote LPMs when appropriate. The management of

interconnections between LPM's, however, is not the responsibility of the user. The local LPM

will create a remote LPM when one is required, and maintain communication with the remote

LPM when this is possible. Placing these responsibilities in the PPM greatly simplifies the work

8 8 8 8 8 P·:
"---"

I L;,MK ~ ~L~MI
/

/ \ \ \

/
/

\ \ / \

0 D 0 D D D
"

/ " " /

"
/

tJ p 0 0 D
" /

"
/ " / " /

D 0 tJ D D tJ D

host boundary host boundary

0 system daemons

D user requested processes

Figure 1: Possible State of a PPM Expanding Three Hosts

5

required of tools and applications using the PPMs services.

All actions are symmetrical for all the LPMs participating in the management of a user's

processes. The only exception to this rule is crash recovery. The crash coordinator site, CCS, is a

specific LPM that acts as the leader in the presence or failures, as will be described in Section 5.

LPM creation is somewhat expensive in terms or message exchanges and in local processing.

Therefore LPMs have a time-to-live period during which they are still present in a host even

though that host may no longer contain processes l.elonging to their user. The creation or an

LPM is accomplished wi\h the help of two system cl :,emons. First, the creation request is directed

to the inet daemon ll3J , inetd, which then passes the request to the process manager daemon,

pmd, creating it if necessary. This daemon proceeds then to create the LPM, and returns the

'accept address' (Figure 2) after verifying that there is no LPM for that user in that host. Ir an

appropriate LPM is found in the host, its accept address is returned. The process manager

daemon is present in an installation as long as there is any LPM present. It serves as a trusted

name server for the creation or LPMs. Authenticated connections are then achieved by

establishing a private reliable stream communication channel between sibling LPMs (Figure 3).

requesting host target host

host boundary

(1) LPM sends a 'create LPM' message to inetd in the target host

(2) inetd passes the request to pmd which is created if not present

(3) pmd creates an LPM for the user if one is not found

(4) pmd sends the network address or the recently created or existing

LPM to the corresponding LPM in the requesting host

Figure 2: LPM Creation Steps Ab Initio

t This is an alternative to having a well known communications port.

6

Our current authentication scheme can only prevent user-level masquerade. We have not

yet addressed the problem of host masquerade. The 4.3BSD IPC mechanism provides no direct

support in this area as no user or process id's are passed, only addresses 112]. We use the process

manager daemons as trusted name servers, and communication between sibling LPMs is done by

reliable virtual circuits provided by TCP connections. This allows us to avoid the use of system­

wide unforgeable entities for authentication. Vi::tual cil'•:!iits, however, limit extensibility. A

datagn.tn based scheme would scale much bettN, t•Pt W{W!·I require individual authentication for

each message. In our computiiig environment TCP W:Jii<'!• tbM are also needed to assure message

delivery. A reliable datagram protocol and a scheme based on remote procedure calls, would be

pro missing alternatives for scalability.

4. Failure-Free Operation

The services of LPMs must be explicitly requested. The PPM mechanism is not integrated

with any command interpreter, and thus its services must be obtained by one of a series of 'tools'

(which may include command interpreters). Our present tools include snapshots, with basic

process control functionalities (stop a process, execute it in the foreground, execute it in the

background, kill it), and exited process resource consumption statistics. They are implemented

within the PPM (just as UNIX shells have some built in commands). There are interfaces for

other tools. Tools invoked by a user establish reliable stream connections with the appropriate

LPM. User requests that require the collaboration of more than one LPM are handled through

the communication infrastructure of the PPM maintained by the LPMs, which is transparent to

the user.

A user's LPM has connections with local tools and with sibling LPMs on remote machines.

LPMs also receive messages from the local kernel. This is the way in which all data pertaining to

the local user's processes are obtained. Kernel modifications were necessary to generate messages

within the kernel. LPM sockets are subdivided into three groups (Figure 4): one socket where the

kernel deposits its messages (called kernel), another socket (called accept) whose address is

distributed by the process manager daemon, and possibly multiple sockets for communication with

sibling LPMs and local tools. LPMs use primarily 4.3BSD mechanisms for intramachine process

control. An extended form of the debugging access call ptrace is used to allow write access by the

process manager to the processes it adopts 12]. A similar but more ambitious form of expanded

access has been described in 19].

8 8 (inetd l
\

8 8 3
jLPMK ~ ~ LP~1~

host boundary host boundary

Figure 3: All LPMs of a PPM Maintain a Secure Reliable Communication Channel

tool or
sibling

tool or
sibling

I
I

/
/

/

I
I

I

Figure 4: LPMs Socket Types

7

Requests can be made to LPMs to adopt particular processes. Adoption allows the LPM to

keep track of a process and its descendants. Adoption may be necessary if the user did not invoke

the process management services at login time. Moreover, adoption also provides the flexibility

desired for the possible use of the mechanism by a debugger. The adoption operations fail if the

process and the PPM belong to different users. As a result of adoption, user processes are

modified to contain specific tracing flags used thereafter by the kernel for event detection. This

mechanism is much like that described in [15].

The interconnection of the sibling LPMs is not a concern of the user. Interconnections are

established when needed and maintained as long as they are likely to be used. Having 'logical

children', i.e., a process creation in a remote host, is one such reason. Having a connection with

the CCS during the recovery from failures is another. The interconnection topology is therefore

quite flexible. In most operational scenarios we expect to have only very few of all the potential

connections between sibling LPMs in place. The topology of the interconnection graph is

dependent on the process creation patterns exhibited by the user processes, their

intercommunications, and the failure modes in the network computing system.

The PPM will outlive a user login session if processes created by that user remain active in

the networked computing environment, or if the time-to-live intervals of some LPMs have yet to

expire. In these case, a user's request for a LPM following a new login will yield an existing one.

This simple scheme allows users to regain knowledge and control of all of the processes that have

been created under the PPM mechanism in the past and are still alive. At least potentially,

extensive historical information about the processing that took place while the user was logged off

should also be accessible.

Because our on-demand communication topology is designed to produce low-connectivity

graphs, we have to pay a price for broadcast requests. The PPM uses a graph covering algorithm.

A scheme for not retransmitting 'old' broadcast requests has been implemented using a signed

timestamp in which the name of the originating host appears. The appropriate time window for

retaining old broadcast requests is a configuration parameter whose optimum value will be derived

from experience. All data returned to the originator of a broadcast request includes the message's

source-destination route. This allows quick routing of messages affecting processes in topologically

distant hosts. No attention is currently devoted to finding minimum hop routes to nodes.

Information about process activities and events is not sent across hosts unless there is an explicit

request.

8

It is the responsibility of network system administrators to have consistent password files

across machines that trust each other. Authentication at the user level is done using the existing

4.3BSD facilities, including the use of '.rhosts' files that increases the flexibility of remote access to

machines. No attempt is made to hide machine bount:aries.

5. Robustne!!-, and Recovery

A PPM should continue to operate in the presen~e or LPM, host, and network failures. The

PPM should inf•1rm the user about the nature of t~w fa;lu<e a.nd reestablish its internal consistency

quickly. Host c!'ashes affect our management scheme only in that communication paths may be

lost. All process activities in that host, obviously, cease. Were we managing resilient

computations, control would have to be carefully transferred to another host. This can be

achieved with robust protocols implemented on top of our basic mechanism. We have chosen not

to do so in our first implementation. LPM crashes are handled just as host crashes. However, the

disappearance of a LPM does mean that information about the processes in that host will be lost.

This may make the actions of certain tools more complicated. For example, the snapshot of the

genealogical process structure may now become a forest.

We expect few crashes to be due to the process manager daemon itself as its structure is

very simple. However, if the process manager daemon loses information about a LPM currently

actice in the host, then the process management mechanism does not operate correctly. The state

information kept by the process manager daemon could be stored in secondary (even stable)

storage so as to survive the daemon's possible failure modes. This would allow recovery from

crashes suffered only by the daemon but not by any LPM. This feature, which has not been

implemented, would certainly add to the overhead of creating LPMs.

At all times in normal operation, one LPM has the distinguished role of being the crash

coordinator site, CCS. Under some failure modes we may have no CCS or multiple CCS. The

CCS becomes active only when a failure is detected. CCS selection is performed through user

information, or established by default by the system when the user first invokes the mechanism.

The '.recovery' file in the user's home directory has a list of hosts in decreasing order of priority in

which their CCS should reside. This 'recovery list' is the basis of the driving search strategy for

recovery. We assume that the recovery list will be short, will exist in all hosts where a user

normally executes processes, and will contain the names of those hosts where the user logs in most

often. Upon creation of a sibling LPM, the network address of the CCS is passed along. In case

of need each of the sibling LPMs can establish a connection with the CCS. For the CCS, the

time-to-live interval has a different meaning: as long as there is any sibling LPM in the networked

system, time-to-live is not decremented.

Our crash recovery mechanism is based on the premise that, in a network of computers,

users tend to use only a few hosts as 'home machines'. These home machines serve as recovery

orchestrators. The crash of a host (or a LPM) in the network results in LPMs trying to establish

connections with the (known) CCS. If the CCS were found to be down, or inaccessible, or the

process manager daemon in that host were not responding, or it provided information regarding

the foreign manager that is different from the information used in creating the connection, then

the LPM that has detected the failure would try to connect in descending order of priority with

the hosts listed in the user's .recovery file. If none of these hosts is available, a time-to-die interval

exists that tells the LPM when to exit after having terminated all of the user's processes in that

host. However, a LPM not in contact with a CCS resumes the normal mode of operation if it

manages to connect to the CCS at any future retry, or gets a communication request from a LPM

in contact with a valid CCS. The rationale for this policy is that, if things go wrong for a long

period at those sites where the user most customarily logs in, and if the user has made no manual

attempt to connect to the dispersed processes in his computation, the appropriate action is to

close down all the activities. A different approach would have to be taken in a distributed

computing environment with fully transparent processor boundaries, as there the notion of home

machine would probably be meanningless.

g

The case of network partition requires some additional care, as separated subnetworks may

exist each of which contains a host in the .recovery file. What happens in this case is that those

new cess that are not at the top of the list keep probing, at a low frequency' the hosts higher on

the list. Whenever such host comes up, they connect to it. Our current implementation allows

connected components of this kind to continue their operations with no bounds in time because

they include a host which the user is presumed to log into frequently.

The existence of name servers in the network could be used to aid in crash recovery. LPMs

would query the name server for a CCS. The mechanism based on .recovery files would not be

needed. In this approach the assignment of the CCS could be better coordinated by network

administrators to avoid possible bottlenecks.

6. Implementation and Performance

The PPM has especially benefited from three previous efforts. First, we learned from the

limitations of the rexec facility present in 4.2BSD [22]. Rexec allows the creation of remote

processes and the delivery of signals to these processes. By itself, however, it is insufficient for

starting distributed computations since no provision is made for flexibly configuring the

communication links and open files of the remote process, or for separately signalling any children

of the remote process. Moreover, since the rexec call is made directly from a user process to a

remote daemon, the shell's process control facilities do not affect the remote processes. Remote

processes must therefore be explicitly hunted for and signalled. Second, in the Summer of 1984, a

process control mechanism had been designed and implemented for 4.2BSD Berkeley UNIX [2].

That mechanism dealt exclusively with the problem of software interrupt delivery across machine

boundaries. It required all processes to have a 'control socket', and there was a centralized system

wide process control facility. That experience led us to formulate several of our design decisions.

Third, we had at our disposal a system similar to Xerox's METRIC system [14] implemented for

4.2BSD Berkeley UNIX [15]. The synthesis of these three experiences and our current functional

requirements inspired our present PPM.

The LPMs in the current implementation execute code written in C. They accept messages

arriving from tools, the kernel, and other LPMs. The LPM is, itself, a multi-process program. It

consists of a main dispatcher process, and some number of handler processes. Many of the

arriving messages contain requests that can be acted upon immediately. Others contain requests

that require communication with other processes. To avoid unnecessarily complex code and

unnecessary delays, these latter requests are handled by processes created by the dispatcher.

These handler processes may block while waiting for a response from a remote process without

interrupting the service of the LPM. Since process creation in UNIX is relatively expensive,

processes that have handled a request may be given further requests, rather than simply creating

new processes. If responses are never received by a handler, they inform the dispatcher of the

failure, which returns a failure message to the originator of the request. Otherwise, a positive

response, together with any associated information, is forwarded to the originator.

At present, our implementation includes two tools: snapshots with process control, and

exited process resource consumption statistics. Work is beginning on graphics interfaces for these

tools and on various additional tools. A library of subroutines handles most interactions with the

PPM, so that user-written programs may easily make use of PPM's capabilities.

A software interrupt delivery mechanism based on the 'processes as files' approach presented

in [9] is a very elegant alternative to our message based approach. Through the incorporation in

the file system of the '/proc' directory, one is able to access any process in the system. With the

advent of a network file system [24], that mechanism extends to multiple hosts. Had we had such

code, we would have used it for message delivery, replacing several functions of the LPMs.

However, those aspects of process management that incorporate event detection cannot be

handled by that approach without the additional capabilities present in our LPMs. Nor does the

fproc mechanism easily generalize to provide the creation and configuration of remote processes.

Host Type
Load VAX 11/780 VAX 11/750 SUN II

0 < Ia ~ 1 7.2 7.2 8.31

1 < Ia ~ 2 9.8 9.6 14.13

2 < Ia ~ 3 13.6 12.8 22.0

3 < Ia ~ 4 18.9 42.7
~~~--

Table 1: Estimated 112-byte Kernel-LPM Message Delivery Time 

in Milliseconds. Load estimator: La. 

10 

We only have preliminary assessments of both the overhead and performance of some 

modified system calls, and of the overall efficiency of the built-in capabilities. The code added to 

the system calls typically amounts to a 40 line message delivery function. The runtime overhead 

for the users not requiring the PPM is negligible, as it only involves comparing to zero the value 

of a variable. The estimated cost of transmitting a 112 byte message between the kernel and a 

LPM is displayed in Table 1. The load estimator used, La, is a time-averaged cpu run queue 

length. Table 2 shows the time taken to create a remote process on a machine where an LPM is 

running and the time to stop or terminate the process. The process creation time does not include 

the time to create the LPM or to form a connection with it. 

action Topological Distance 

on 
processes within host one hop two hops 

create 77 N/A N/A 
stop 30 199 210 

terminate 30 199 210 

Table 2: Elapsed Time of Process Creation and Termination Events in Milliseconds. 

(N /A: Not Applicable.) 

We have also performed a limited set of measurements of the elapsed time required to 

gather snapshot information about distributed computations. For this purpose we transmitted 

between the appropriate LPMs information about six user processes in each of the remote 

machines. The resulting times are shown in Table 3. Figure 5 displays the four PPM topologies 

used. Processes are identified in the network by <host name, pid >. 

1. Future Work 

topology 1 topology 2 topology 3 topology 4 

Time 205 225 461 507 

Table 3: Elapsed Time in Milliseconds To Transmit 

Snapshot Information in Four Topologies 

The current implementation and design of the PPM allows extensions in several directions. 

Providing more user tools which use the interfaces of our mechamism has high priority. User 

utilization of the system depends on the availability of more tools. If we look towards distributed 

systems with no host boundaries some of our design decisions need to be reevaluated and the 

implementation certainly be changed. One area of our implementation that deserves a second 

look is the establishment and maintenance of the PPM communication topology. Different 

administration goals may dictate different requirements for the underlying communication 



[_~~~·-·-·-1 LPMj 
Topology 1 

ILPMI 
I 
I 

I LPMH LPMI-1 LPMI 
Topology 3 

I LPMI-·-·4 LPM~·-·-1 LPMj 
Topology 2 

Topology 4 

Figure 5: Snapshot Configuration for Four PPM Topologies 

11 

topology. Our current set of criteria may not suffice. A PPM could cater for tailored 

management of different types of computations. Mechanisms could be different for short-lived 

distributed computations than for long-lived ones. Mechanisms must certainly be different from 

the current ones for management of resilient computations. One could also envision enhancing 

the PPM to manage operations on special objects such as replicated files. 

8. Conclusions 

A resilient mechanism for on demand flexible process management in a network of 

computers has been presented. We call it the personal process manager, PPM. Its prototype 

implementation is viewed as a tool for experimentation in networked environments, as well as a 

testbed for ideas to be implemented in a host transparent distributed system. The PPM provides 

the user with capabilities not found elsewhere. In particular, it allows for process control across 

machine boundaries, as well as for event driven user defined actions. It is resilient to software, 

host, and network failures. 

The PPM may gather and use historic data for process management. The PPM overhead is 

proportional to the services requested. Most actions are performed on demand .. There is also the 

flexibility to have many different tools for data reduction and display. The PPM's algorithms 

were designed to scale well, but we have yet to stress test our implementation. The current 

design does not apply to systems without explicit machine boundaries. The services of the PPM 

can be used by a debugger, as the granularity of event tracing is user-settable. Moreover, in 

networking computing environments with only one or a few users per host, scenario that we 

expect to be the dominant one in the future in a number of environments, our mechanism should 

operate most effectively. 

An initial assessment of the PPM overhead shows that it is negligible for users not requiring 

the mechanism, and load dependent for those using it. The intrahost kernel-manager message 

transmission time varies between 7.2 and 42.7 milliseconds, depending on the cpu power of the 

host and its load. Remote process creation, once a connection between sibling managers exist, 

takes 177 milliseconds under lightly loaded conditions. Transmitting the required information 

about six processes, to display the snapshot of genealogical process dependencies, for a small set of 

remote hosts took between 205 and 507 milliseconds. 

Our plans are to develop more tools that will use the interfaces present in the PPM. In 

particular a display tool, a historical data gathering tool, a tool for displaying the open and closed 



12 

files of processes, a tool for displaying file descriptors, and one for IPC activity tracing and 

analysis. We also need to work on better human interfaces, and to assess our algorithms, 

especially in the area of message routing. 

0. Bibliography 

[1] Brownbridge, D. R., Marshall, L. F., and Randell, B., "The Newcastle Connection or UNIXes 

of the World Unite." Software-- Practice and Experience, Vol. 12, 1982, pp. 1147-1162. 

[2] Caceres, R, "Process Control in a Distributed Berkeley UNIX Environment." Report No. 

UCB/CSD 84/211, December 1984, Computer Science Division, University of California, 

Berkeley. 

[3] Cheriton, D. R., Malcolm, M. A., Melen, S., and Sager, G. R., "Thoth, a portable real-time 

Operating System." Communications of the ACM, Volume 22, No. 2, pp. 105-115, 

February, 1979. 

[4] Cheriton, D. R., "The V Kernel: A Software Base for Distributed Systems." IEEE Software, 

Vol. 1, April 1894, pp. 19-42. 

[5] Ericson, L. W., "DPL-82: a language for distributed processing." Proceedings of the 3rd Int. 

Conf. on Distributed Computing Systems, 1982. 

[6] Ferrari, D., "The Evolution of Berkeley UNIX." Report No. UCB/CSD 83/155, December 

1983, Computer Science Division, University of California, Berkeley. 

[7] Jones, A. K., and Schwans, K., "TASK forces: distributed software for solving problems of 

substantial size." Proceedings of 4th Int. Conf. on Software Engineering, 1979. 

[8] Jones, A. K., Chansler, R. J., Durham, 1., and Vegdahl, S. R., "StarOS, a Multiprocessor 

Operating System for the Support of Task Forces." Proceedings of the 7th SOSP, Operating 

Systems Review, Voll. 13, December 1979, pp. 117-127. 

[9] Killian, T. J., "Processes as Files." Proceedings of the Summer 1981 USENIX Conference, 

Salt Lake City, Utah, June 1984. 

[10] Kramer, J., and Magee, J., "Dynamic configuration for distributed systems." IEEE Trans. 

on Software Engineering, Vol SE-11, No 4, April1985. 

[11] LeBlanc, R. J., and Maccabe, A. B., "The design of a programming language based on 

connectivity networks" Proceedings of the 3rd Int. Conf. on Distributed Computing 

Systems, 1982. 

[12] Leffler, S. J., Fabry, R. S., and Joy, W. N., "A 4.2bsd Interprocess Communication Primer." 

Report No. UCB/CSD 83/145, July 1983, Computer Science Division, University of 

California, Berkeley. 

[13] Leffler, S. J., Karels, M., and McKusick, M. K., "Measuring and Improving the Performance 

of 4.2BSD." Proceedings of the Summer 1984 USENIX Conference, Salt Lake City, June 

1984, pp. 237-252. 

[14] McDaniel, G., "Metric: A Kernel Instrumentation System for Distributed Environments." 

Proceedings of the 6th SOSP, Operating Systems Review, Vol. 11, No. 5, November 1977, 

pp. 93-99. 

[15] Miller, B. P., Sechrest, S., and Macrander,C., "A Distributed Program Monitor for Berkeley 

Unix." Software- Practice fj Experience, to appear, 1985. 

[16] Ousterhout, J. K., Scelza, D. A., and Sindhu, P. S., "Medusa: An Experiment in Distributed 

Operating System Structure." Communications of the ACM, Vol. 23, No. 2, February, 

1980, pp. 92-105. 

[17J Postel, J., "User Datagram Protocol." RFC 768, USC Information Sciences Institute, August 

1980. 



13 

[18] Postel, J., "Internet Protocol- DARPA Internet Program Protocol Specification." RFC 791, 

USC Information Sciences Institute, September 1981. 

[19] Postel, J., "Transmission Control Protocol." RFC 793, USC Information Sciences Institute, 

September 1981. 

[20] Powell, M. L., and Miller, B. P., "Process Migration in DEMOS/MP." Proceedings of the 

9th SOSP, Operating Systems Review, Vol. 11, No.5, November 1977, pp.23-31. 

[21] Thompson, K., "UNIX Implementation." The Bell System Technical Journal, Vol. 57, No.6, 

July-August 1978, pp. 1931-1946. 

[22] "UNIX Programmers Manual." 4.2 Berkeley Software Distribution, Virtual VAX-11 Version, 

August 1983, Computer Science Division, Department of Electrical Engineering and 

Computer Sciences, University of California, Berkeley, Berkeley CA 94720. 

[23] Walker, B., Popek, G., English, E., Kline, C., and Thiel, G., "The LOCUS Distributed 

Operating System." Proceedings of the 9th SOSP, Operating Systems Review, Vol. 17, No. 

5, November 1983, pp. 49-70. 

[24] Weinberger, P. J., "The Version 8 Network File System (Abstract)." Proceedings of the 

Summer 1984 USENIX Conference, Salt Lake City, June 1984. 


